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Clinical Implications of Genetic Defects in G Proteins

The Molecular Basis of McCune-Albright Syndrome and
Albright Hereditary Osteodystrophy

MATTHEW D. RINGEL, M.D., WILLIAM F. SCHWINDINGER, M.D., PH.D., AND MICHAEL A. LEVINE, M.D.

Introduction

Heterotrimeric signal transducing guanine nucleo-
tide binding proteins (G proteins) couple extracellu-
lar receptor proteins to intracellular effector en-
zymes and ion channels, serving as critical mediators
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of cellular responses to external stimuli. These pro-
teins are a subset of a larger family of guanosine
triphosphate (GTP)-binding proteins of differing mo-
lecular weight and subunit composition that share a
common mechanism of GTP-binding and hydrolysis
that regulates protein activity. G proteins are com-
prised of 3 subunits (o, 3, and y) each encoded by
many different genes. The multiplicity of G protein
subunits facilitates great combinatorial variability,
which, in part, accounts for the ability of G proteins
to interact with many different receptor and effector
proteins. Over 100 G protein-coupled receptors have
been identified. The receptors share a common ser-
pentine structure consisting of 7 membrane-span-
ning domains, and detect extracellular signals as di-
verse as light, odorants, hormones, growth factors,
and neurotransmitters (12). G proteins regulate
many second messenger systems, including enzymes
such as adenylyl cyclase (AC), phospholipase C
(PLC), and phospholipase A;, as well as ion channels.
There are 2 classes of mutations in G proteins.
Activating mutations in the gene (GNASI) encod-
ing the o subunit of the G protein that stimulates AC
(Go,) have been identified in patients with McCune-
Albright syndrome (MAS), a disorder characterized
by increased hormone secretion and cellular prolif-
eration of many endocrine tissues (141, 166). By con-
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trast, inactivating mutations of the GNASI gene
are present in patients with Albright hereditary os-
teodystrophy (pseudohypoparathyroidism and pseu-
dopseudohypoparathyroidism), a syndrome associ-
ated with resistance to multiple hormones that
activate Go,-coupled receptors (91, 92, 122, 165). Ex-
perimental analysis of these 2 syndromes, which rep-
resent contrasting gain of function and loss of func-
tion mutations in the same gene, has extended our
understanding of the clinical and biochemical conse-
quences of dysfunctional G protein action and has
provided a “bench to bedside” demonstration of the
critical role that G proteins play in transmembrane
signal transduction in humans. In this review, we
focus on these 2 syndromes as a paradigm for under-
standing the clinical implications of altered G pro-
tein function.

G Protein Structure and Function

G proteins share a common heterotrimeric struc-
ture consisting of an o subunit and a tightly coupled
By dimer. The o subunit interacts with the G protein
receptor and the Py subunits, binds GTP, and pos-
sesses intrinsic GTPase activity (16). At least 16
genes encode mammalian o chains; additional pro-
tein diversity results from the generation of alterna-
tively spliced mRNAs. The distribution of some o
subunits is highly tissue specific (for example, G
is restricted to olfactory neuroepithelium), while
other a chains have a ubiquitous representation (for
example, G, is expressed in all tissues). The GTP-
bound ¢ chain is able to regulate the activity of
membrane-bound effector molecules that generate
intracellular “second messengers.” The ¢ subunits
associate with a smaller group of B (5) and v (10)
subunits (51, 96, 133, 162). The P and y subunits
combine preferentially with one another (138, 139)
and the resultant By dimers demonstrate preferred
associations with specific o subunits (133, 134, 162).
Thus, combinatorial specificity in the associations
between G protein subunits generates enormous di-
versity and permits exquisite specificity in the inter-
actions of G protein heterotrimers with receptors
(79). At present it is unknown whether specific G
protein subunit associations occur randomly or if
there are regulated mechanisms that determine the
subunit composition of heterotrimers.

G protein activity is regulated by the binding and
hydrolysis of GTP by the ¢ subunit (Figure 1). In
the basal (nonstimulated) state, G proteins exist in
the heterotrimeric form with guanosine diphosphate
(GDP) tightly bound to the o chain. Upon receptor
activation, a conformational change occurs in the o
chain that facilitates the exchange of bound GDP
for GTP, with subsequent dissociation of the o-GTP

Effector Receptor

GDP

P
GTP

Fi1G. 1. The G protein GTPase regulatory cycle. In the nonstimuy-
lated (“off”) state, the guanosine diphosphate (GDP) is bound to
the o subunit. The o subunit is associated with the By dimer
forming a heterotrimer (upper left). A ligand binds to a G protein-
coupled recepior causing a conformational change in the receptar
and G protein. The o subunit then exchanges GDP for guanosine
triphosphate (GTP) (upper right). After binding GTP, the ¢ sub-
unit is activated (turned “on”) and dissociates from the By dimer
and the receptor. The GTP-bound o subunit regulates multiple
effector molecules (lower right). GTP is hydrolyzed to GDP by
the intrinsic GTPase activity of the o subunit (lower left). The
inactive GDP-bound ¢ subunit reassociates with the $y dimer and
the heterotrimeric G protein is ready for another cycle of
activation.

chain from the By dimer and the receptor. The free
o-GTP chain is now able to interact with effector
enzymes and ion channels to regulate their activity.
In addition, free By dimers modulate the activity of
at least some effectors (for example, certain forms
of AC and PLC) and participate in receptor desensiti-
zation (30, 78, 125, 126). The interaction of o-GTP
with the effector molecule is terminated by the hy-
drolysis of GTP to GDP by an endogenous GTPase.
With hydrolysis of GTP to GDP, the a-GDP chain
reassociates with the By dimer and the heterotrim-
eric G protein is ready for another cycle of recep-
tor activation.

X-ray crystallography and in vitro mutagenesis ex-
periments have identified specific sequences in the
o chain that determine the functional and physical
interactions of the o chain with receptors, effectors,
and By dimers. Moreover these studies have also
defined regions that regulate binding and hydrolysis
of GTP (11, 32, 57, 72, 84, 104, 115, 118).

Posttranslational modification of G protein sub-
units is required for both proper membrane localiza-
tion and effective interactions with effector mole-
cules. Coincident with G protein activation, all o
subunits (except Ga,) undergo lipid modification
(palitoylation) at a Cys residue near the NH,termi-
nus. In addition, many o subunits (for example, Go,
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and Ga;) are myristolated at an NH, terminal glycine,
a modification that increases affinity for py dimers.
The y subunits are modified at the C-terminus by
attachment of a farnesyl or geranygeranyl group to
a Cys residue (163). These posttranslational modifi-
cations of the o and 7y subunits are necessary for
efficient G protein localization, coupling, and
turnover,

G Protein-Coupled Signaling Cascades

G proteins that are coupled to serpentine recep-
tors regulate activity of membrane-bound forms of
AC and PLC. There are multiple isoforms of both
AC (65, 116, 154) and PLC (135) which can be distin-
guished by their tissue distribution and ability to
interact with o. and By subunits. Activation of AC
leads to synthesis of adenosine 3,5-cyclic mono-
phosphate (cAMP), the “second messenger” that
activates protein kinase A (PKA). By contrast, stimu-
lation of PLC leads to hydrolysis of phos-
phatidylinositol 4,5-diphosphate (PIP;) with the sub-
sequent production of diacylglycerol (DAG) and
inositol 1,4,5 triphosphate (IP;). DAG activates pro-
tein kinase C (PKC) while IP; releases calcium from
intracellular stores. Both PKA and PKC initiate pro-
tein phosphorylation cascades that result in diverse
cellular and genomic effects.

Activity of AC is under dual reguiatory control by
G proteins. Activation of receptors coupled to Gs
(for example, the B adrenergic receptor) leads to
stimulation of AC and increased synthesis of cAMP
(21, 22, 149). In addition, many cells express other
receptors that are coupled to G; (for example, mus-
carinic receptors) which when activated lead to inhi-
bition of AC (53, 54, 75). Moreover, By dimers re-
leased by activation of G, or G; can also influence
the activity of some forms of AC (30, 139, 153). Addi-
tional complexity derives from the observation that
activity of several forms of AC are regulated by PKC,
which is activated via the Gcoupled PLC signaling
pathway. Thus, AC acis as a coincidence detector,
and its activity is determined by a complex and co-
ordinate interplay between multiple G protein sub-
units and other regulators (for example, calcium-
calmodulin).

In many endocrine tissues, synthesis of cAMP
leads to increased hormone formation and cell
growth via PKA-linked pathways. For example, in
thyrocytes, thyrotropin (thyroid-stimulating hor-
mone-TSH)-dependent stimulation of AC leads to
activation of PKA, and the subsequent phosphoryla-
tion events lead to genomic (and nongenomic) ef-
fects that increase expression of the thyroglobulin
gene and other genes important for thyroid hormone
synthesis and thyrocyte growth (8, 108). These mo-
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lecular events ultimately result in increased release
of thyroid hormone and cellular proliferation (87,
160).

Similar to many other serpentine hormone recep-
tors (for example, PTH, luteinizing hormone [LH],
vasoactive intestinal peptide, calcitonin, glucagon-
like peptide), the TSH receptor also stimulates the
PKC phosphorylation cascade via G/G,-dependent
activation of PLC (8, 29, 40, 58, 160) (Figure 2). Bind-
ing of TSH to its receptor leads to activation of G,
and G, which stimulate PLC. PLC subsequently hy-
drolyzes PIP, to DAG and IP; which activates PKC
and increases intracellular calcium, respectively. Ac-
tivation of this signaling cascade leads to thyroid
cell growth but not hormone production.

As depicted in Figure 2, activation of the TSH
receptor leads to the subsequent simultaneous acti-
vation of both the AC and PLC pathways, a process
that facilitates crosstalk between these pathways.
The By dimers released from G and/or G, can mod-
ulate activity of certain forms of AC and PLC. More-
over, PKC can phosphorylate certain isoforms of G
and AC, further influencing activity of these proteins.
Additionally, the released Py dimers activate p21m,
a key G protein regulating the mito gen-activated pro-
tein kinase pathway (34, 39). Thus, crosstalk be-
tween signaling pathways refines the hormonal con-
trol of cellular processes as diverse as cell growth
and proliferation, metabolism, and gene
transcription.

TSH receptor

L PKA PKC y

F1G. 2. Signal transduction pathways coupled to the thyrotropin
(thyroid-stimulating hormone-TSH) receptor. The TSH receptor
couples to the G proteins G, and Gy to activate adenylyl cyclase
(AC) and phospholipase C (PLC), respectively. R, a generic recep-
tor for ligands that inhibit adenylyl cyclase, is depicted as coupling
to G, The subunit structure (ofiy) of the G proteins and their
interactions with effector proteins are described in the text. Ab-
breviations: PKA = protein kinase A; PKC = protein kinase C;
DAG = diacylglycerol.
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Go, Gene Defects

The human Go, subunit is encoded by the GNASI
gene located on chromosome 20g13.1-13.2 (95). It
contains at least 13 coding exons (81) and can be
alternatively spliced to yield 4 different protein iso-
forms with similar biological activities (17). In addi-
tion, there are at least 2 alternative first exons that
produce transcripts encoding 1) a truncated, non-
fanctional Go, protein that uses an initiator ATG
sequence in exon 2 (69), and 2) a larger (92 kDa)
protein, termed XLo,, of uncertain function that is
produced by the fusion of a novel 51 kDa protein
to the protein encoded by exons 2 through 13 of
Gao, (76).

Somatic and germline mutations in GNASI that
lead to either gain of function or loss of function
have been identified in patients with disorders char-
acterized by hormone-independent cellular prolifer-
ation or hormone resistance, respectively.

Activating Mutations of Go, in Oncogenesis

Vallar et al (158) initially described a subset of
human growth hormone-secreting pituitary tumors
that exhibited increased adenylyl cyclase activity in
the absence of growth hormone releasing hormone
(GHRH). Landis et al (86) subsequently identified
the molecular basis for constitutive activation of AC
as somatic mutations in GNAS1 that resulted in the
replacement of either Arg™ or GIn?", These 2 GNAS1
missense mutations, which convert the GNASI gene
to an oncogene termed gsp, enable the Go, subunit
to remain in the active, GTP-bound state. Such acti-
vating mutations occur in 8%-43% of growth hor-
mone-secreting tumors.

Arg® is the site for ADPribosylation by Vibrio
cholera exotoxin. This covalent modification inhibits
the intrinsic GTPase of Go, and results in ligand-
independent stimulation of adenylyl cyclase (73).
The subsequent accumulation of cAMP in intestinal
epithelial cells is responsible in part for the secretory
diarrhea associated with cholera.

GIn*" corresponds to the cognate amino acid,
GIn®, that is frequently replaced in the low molecular
weight GTP-binding protein ras to convert it to an
oncogene. Mutations in p21* that replace GIn® are
present in a variety of human tumors (39, 55). These
mutations inhibit the GTPase activity of the p21™
protein and lead to constitutive activation of signal-
ing pathways that are transforming in vitro (97, 131,
148). Arg®! and GIn* are located in the G3 and G4
domains of Ga,, which correspond to domains that
are required for GDP/GTP binding and intrinsic
GTPase activation, respectively (10, 64, 119).

In addition to growth hormone-secreting pituitary

tumors, Go, mutations are present in a subset of
functioning and nonfunctioning benign and malig-
nant thyroid neoplasms, but are rare in other endg-
crine tumors (Table 1).

McCune-Albright Syndrome

Molecular basis of McCune-Albright syndrome

In 1937, McCune and Bruch (107) and Albright and
associates (6) independently described a sporadic
syndrome characterized by the clinical triad of poly-
ostotic fibrous dysplasia, café au lait skin lesions,
and endocrine hyperfunction now known as
McCune-Albright syndrome (MAS).

Evidence suggesting that the basis for MAS in-
volved constitutive (that is, hormone-independent,)
activation of the AC signaling pathway in affected
tissues included the following: 1) cAMP is the critical
second messenger leading to cellular proliferation
and/or function in affected tissues, and 2) despite
excessive activity of endocrine tissues, serum levels
of the relevant regulatory or tropic hormones were
either normal or decreased, suggesting autonomous
function. Because each affected cell type expresses
different receptors, a postreceptor defect in a pro-
tein that is present in all affected tissues was pro-
posed as a unifying molecular etiology for MAS. The
identification of activating mutations of Go, in
growth hormone-secreting pituitary tumors and au-
tonomously functioning thyroid tumors made
GNASI an attractive candidate gene.

Mutations in GNASI causing the replacement of
Arg® [Arg* (CGT)—His(CAT) and Arg®'(CGT)—
Cys(TGT)] have been described independently by
Weinstein et al (166) and Schwindinger et al (141)
in DNA isolated from tissues obtained from patients

TABLE 1. Clinical syndromes associated with activating
mutations of GNAS1*

McCune-Albright syndrome (100%)
Pituitary adenomas (8%-43%)
Growth hormone-secreting adenomas (14, 31, 85, 86, 100,
150, 158)
ACTH-secreting adenomas (14, 168)
Clinically nonfunctioning adenomas (14, 100, 155, 167, 172)
Thyroid neoplasms (3%-70%) (55, 56, 105, 109, 117, 151)
Hyperfunctioning and nonfunctioning follicular adenomas
Papillary and follicular carcinornas
Parathyroid neoplasims (<5%)
Parathyroid ademonas (14, 161, 169)
Adrenocortical disorders (<5%)
Aldosterone-producing ademonas (172)
Adrenal hyperplasia (169)
Pheochromocytoma (169)

* Missense mutations of GNASI and Arg?” and GIn®¥ that cause
constitutive activation of adenylyl clyclase and the cAMP signal-
ing cascade have been identified in patients with McCune-Albright
syndrome and subsets of a variety of endocrine tumors.
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with MAS. Cells containing these mutations are pres-
ent in affected endocrine tissues, skin, and bone
from patients with MAS. GNASI activating muta-
tions are not present in all cells of affected patients,
however, even within affected organs. Mutation-
bearing cells are distributed in a mosaic pattern, with
the greatest number present in the most abnormal
areas of affected tissues (141, 146). Moreover, the
gene mutation is also present in cells not typically
affected by MAS, including blood, liver, and heart
(141, 145, 146).

These molecular studies have confirmed the hy-
pothesis first suggested by clinical observations of
variable involvement of endocrine organs and skele-
ton and a distribution of skin lesions coinciding with
lines of embryologic development: that the genetic
mutation in MAS is not germline but rather is a post-
zygotic somatic mutation (60). The lack of docu-
mented heritability of MAS suggests that germline
transmission of the mutation would be lethal.

Clinical manifestations of McCune-Albright
syndrome

We reviewed the English literature by MEDLINE
(National Library of Medicine, Bethesda, MD) search
(1966-1995) and cross-referencing (1926-1995) and
identified 158 reported cases of MAS. The clinical
data are summarized in Table 2 and are discussed
in detail below. It is difficult to determine the precise
prevalence of clinical and endocrine manifestations
of MAS from these studies owing to technical differ-
ences in diagnostic sensitivity over time, and a prob-
able bias toward reporting patients with more severe
or atypical manifestations of the disorder.

Polyostotic fibrous dysplasia (PFD): Nearly all

(98%) patients with MAS have solitary or multiple
expansile fibrous dysplasia lesions. These lesions
typically develop during the first decade of life (see
Table 2), and can cause progressive deformity, frac-
tures, and nerve entrapment. The femur and pelvis
are most commonly involved. Radiographs of af-
fected bones reveal expansile, lytic lesions with a
“ground glass” pattern and a scalloped border sec-
ondary to endosteal erosion (62, 88). Bone histology
discloses uniform, benign-appearing whorled bun-
dles of fibrous tissue with embedded fiber-bone tra-
beculae. These lesions bear some resemblance to
those found in hyperparathyroidism (osteitis
fibrosa), but PTH levels are not elevated in MAS.
Solitary lesions (mono-ostotic fibrous dysplasia) are
present in a minority of patients with MAS.

Osteosarcomas occurred in some MAS patients
(mean age, 36 yr) (44, 61, 62, 136). In most cases
the patient died as a result of the osteosarcoma.
Accordingly, patients with MAS should be monitored
carefully for the development of osteosarcomas.
These tumors are not associated with treatment of
the fibrous dysplasia with external beam radiation
therapy. It is not known whether these osteosarco-
mas represent malignant degeneration of fibrous
dysplasia.

PFD also occurs in patients without MAS, and may
be associated with the development of myxomas,
sarcomas, and hyperparathyroidism (42, 44, 61, 62,
129, 136). To date, none of these lesions have been
reported to contain a Go mutation.

Café au lait skin lesions: Patients with MAS typi-
cally have 1 or more pigmented macules, termed café
au lait lesions, that have irregular borders (“coast of
Maine™). By contrast, café au lait skin lesions that
occur in patients with neurofibromatosis (Von Rec-

TABLE 2. Clinical manifestations of McCune-Albright syndrome in 158 reported cases*

Patients Male Female

Age at Diagnosis

Manifestation (n = 158) (n = 53) (n = 105) (y7) (Range) Comments

Fibrous dysplasia 154 . 51 103 7.7 (0-52) Polyostotic more common than monostotic

Café au lait lesions 135 49 86 7.7 (0-52) Variable size and number of lesions, irregu-
lar border (“coast of Maine™)

Precocious puberty 82 8 T4 49 (0.3-9) Common initial manifestation

Acromegaly/gigantism 42 20 22 14.8 (0.2-42) 17/26 with adenoma on MRI/CT

Hyperprolactinemia 23 9 14 16.0 (0.2-42) 23/42 of acromegalics with T PRL

Hyperthyroidism 30 7 23 14.4 (0.5-37) Euthyroid goiter is common

Hypercortisolism 9 4 5 44 (0.2-17) All primary adrenal

Myxomas 8 3 5 34 (17-50) Extremity myxomas

Osteosarcoma 3 1 2 36 (3437 At sites of fibrous dysplasia, not related to
prior radiation therapy

Rickets/osteomalacia 4 1 3 27.3 (8-52) Responsive to phosphorous plus calcitriol

Cardiac abnormalities 17 8 9 (0.1-66) Arrhythmias and CHF reported

Hepatic abnormalities 16 6 10 1.9 (0.3-4) Neonatal icterus is most common

Abbreviations: MRI = magnetic resonance imaging; CT = computed tomography; PRL = prolactin; CHF = congestive heart failure.
* References provided in the text. Evaluations include clinical and biochemical data; other rarely described manifestations include
metaholic acidosis, nephrocalcinosis, mental retardation, thymic and splenic hyperplasia, and colonic polyps.
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klinghausen syndrome) have a smooth border
(“coast of California’™). The distribution of skin le-
sions in MAS is also characteristic: Lesions rarely
extend beyond the midline, and the majority tend to
be on the same side of the body as the skeletal le-
sions. They occur most commonly on the buttocks
and lumbosacral regions. Happle (60) noted that le-
sions follow the lines of Blashko, embryologic lines
of ectodermal migration, producing an S-shaped pat-
tern on the chest, a V-shaped pattern on the back,
and a linear distribution on the extremities. This
clinical observation led to the hypothesis that MAS
represented a somatic defect with mosaicism (as
described above).

Endocrine abnormalities: Endocrine disorders
are common in MAS and are characterized by auton-
omous and excessive function of hormone-produc-
ing tissues (see Table 2). Serum concentrations of
tropic or stimulating hormones are typically normal
or reduced. The most common endocrine disorder
is gonadal hyperfunction. Eighty-two of 133 (62%)
patients reported in the literature who were evalu-
ated for ovarian or testicular function were found
to have abnormally elevated sex hormones with low
or undetectable serum levels of gonadotropins (6,
13, 20, 28, 35-37, 4346, 49, 50, 52, 61-63, 68, 77, 80,
88, 89, 98, 99, 102, 103, 106, 113, 127, 129, 130, 143,
144, 146, 156).

Precocious puberty is a common initial manifesta-
tion of MAS in girls, and is readily recognized by
the development of secondary sexual characteristics
prior to age 9 years. In general, estrogen levels are
elevated as a result of excessive ovarian function,
and serum levels of LH and follicle-stimulating hor-
mone (FSH) are low (88). Sex hormone secretion is
typically not associated with follicular maturation
and ovulation. Patients show prepubertal LH re-
sponses to infusion of GnRH, a characteristic of go-
nadotropin-independent precocious puberty (that is,
precocious “pseudopuberty”™) (49). Benign ovarian
cysts may occur, and surgical excision may result in
regression of secondary sexual characteristics until
the onset of normal pubertal development. As adults,
these women are generally fertile, although they may
have occasional irregular menses due to continued
gonadotropin-independent production of estrogen
(13, 88). Treatment of girls with MAS and precocious
puberty with testalactone, an aromatase inhibitor,
has been successful for short periods of time, but
long-term (1-3 yr) treatment has been disappointing
(45, 63).

Pituitary-independent precocious puberty also oc-
curs in boys with MAS, but it is much less common
than in young girls. Approximately 10% (8/82) of re-
ported MAS patients with precocious puberty are
male. Testicular biopsy in these cases reveals vari-

able degrees of seminiferous tube development ang
Leydig cell hyperplasia (101).

Growth hormone (GH) excess and/or hyperpro-
lactinemia are common in patients with MAS (3, 4,
13, 19, 23, 28, 33, 35, 37, 44, 47, 52, 61, 66, 71, 80, 82
83, 88, 89 98, 99, 106, 111 121, 127 128, 130 139
144 146, 147 152). Many patlents will also have Ied-
tures of acromegaly and galactorrhea. Gigantism in
children and adolescents has also been well de-
scribed. While the female:male ratio of MAS patients
is approximately 2:1, increased growth hormone se-
cretion occurs in approximately equal numbers of
males and females (20 versus 22).

The biochemical behavior of growth hormone-
producing pituitary tumors in patients with MAS is
indistinguishable from that of sporadic tumors with
and without gsp mutations. GH secretion is stimuy-
lated by thyrotropin-releasing hormone (TRH),
GHRH, and sleep, and is incompletely suppressed
by glucose administration (35). However, only 65%
of MAS patients with growth hormone excess have
radiographic evidence of a pituitary tumor, a much
lower incidence than in sporadic cases of acromeg-
aly (99%) (35). In addition, hyperprolactinemia oc-
curs in over 50% (23/42) of MAS patients with ele-
vated GH levels, a frequency somewhat greater than
that occurring in patients with sporadic pituitary tu-
mors (40%).

Pituitary pathology in patients with MAS includes
adenoma, nodular hyperplasia, and mammosomatc-
trope hyperplasia. Surgery may be technically diffi-
cult if there is coexisting PFD of the base of the
skull. Despite this potential complication, both open-
and trans-sphenoidal hypophysectomies have been
successfully performed. Adjuvant and primary ther-
apy with external beam irradiation have also been
reported (28, 66, 144, 147). Despite concerns regard-
ing increased risk of developing osteosarcoma in
regions of bone with PFD, no case of radiation-in-
duced osteosarcomas has been reported in MAS.

Medical therapy with somatostatin analogs and
bromocriptine has been shown to reduce tumor size
and hormonal secretion in some, but not ali, patients
(23, 33, 47, 52, 80, 130, 147, 152).

Autonomous thyroid nodules and hyperthyroid-
ism have been reported in 30 of 91 (33%) MAS pa-
tients who underwent thyroid evaluation (3, 4, 20,
36, 44-46, 48, 52, 62, 68, 82, 88, 111, 129, 132, 146,
173). Thyroid nodules have been treated by radioac-
tive iodine ablation or surgery. The degree of hyper-
thyroidism is variable, and serum concentrations of
TSH are typically low. The thyroid gland will often
appear normal by physical exam, but nodules are
nearly always detectable by sonography (48). Pa-
tients lack clinical or serclogic evidence of autoim-
mune thyroid disease, and thyroid-stimulating immu-
noglobulins are undetectable.
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Patients with MAS occasionally develop autono-
mous function of the adrenal gland and primary hyp-
ercortisolism (1, 9, 15, 37, 77, 106, 146, 173) at a
young age (ean age, 4.4 yr). In contrast to pituitary-
dependent Cushing disease, the elevated concentra-
tions of cortisol are not suppressed by administra-
tion of high-dose dexamethasone, and serum levels
of ACTH are low or undetectable. Adrenal gland his-
topathology reveals either nodular hyperplasia or
solitary adenoma (106).

Hypophosphatemic rickets and osteomalacia can
develop in patients with polyostotic fibrous dyspla-
sia, with or without the MAS phenotype. Four pa-
tients with MAS have been diagnosed with osteoma-
lacia or rickets (59, 77, 90). These patients have an
abnormally low renal tubular maximum for the reab-
sorption of phosphorous per liter of glomerular
filtrate (TmP/GFR), indicative of renal phosphate
wasting and subsequent hypophosphatemia that
leads to rickets or osteomalacia. The pathophysio-
logic basis for the hyperphosphaturia remains un-
known. A similar clinical syndrome of hyperphos-
phaturia with subsequent osteomalacia or rickets
occasionally associated with glucosuria and/or ami-
noaciduria has been described in X-linked hypophos-
phatemic rickets and in patients with various tumors
of generally mesenchymal origin (oncogenic or tu-
mor-associated osteomalacia). In patients with tu-
mor-associated osteomalacia, renal transport of
phosphate becomes normal after removal of the tu-
mors, thus implicating tumor production of a hu-
moral factor (41).

Two theories have been proposed to explain hy-
perphosphaturia in MAS: 1) the production of a cir-
culating phosphaturic tactor, termed phosphatonin
(41), by fibrous dysplasia lesions; or 2) an intrinsic
defect in renal tubular reabsorption of phosphate.
Recent studies suggest that both hypotheses are
plausible. Activating mutations of G, have been
identified in the kidneys of patients with MAS, and
could result in excess generation of cAMP in proxi-
mal tubular cells and consequent reduction in TmP/
GFR. Indeed, hasal levels of nephrogenous cAMP are
elevated in MAS patients with hypophosphatemia
despite normal serum levels of PTH (174). However,
these observations cannot exclude the possibility
that a circulating phosphaturic factor is also present
in MAS patients with hypophosphatemia. The occur-
rence of hypophosphatemic osteomalacia in patients
with isolated fibrous dysplasia supports the notion
that similar bone lesions in patients with MAS may
elaborate a phosphaturic factor.

Variability of tissue involvement: The tissue dis-
tribution of the GNASI mutation in patients with
MAS is not limited to endocrine cells. Activating Goi,

mutations have been identified in peripheral blood
leukocytes, liver, heart, thymus, and the gastrointes-
tinal tract (141, 146). The presence of the GNAS]
mutation in these tissues has in some patients been
associated with clinical consequences such as hepa-
titis, cardiac arrhythmias, or intestinal polyps.

The variable clinical involvement of different tis-
sues in patients with MAS likely reflects several bio-
logical effects. First, the GNASI gene is mutated
early in embryogenesis and therefore is distributed
among a mosaic population of cells. The proportion
and distribution of affected cells in a tissue will be
determined by the precise stage in development in
which the mutation occurred. Thus, mutational
events that occur later in embryogenesis are likely
to give rise to fewer mutant cells, and a milder phe-
notype, than mutational events that occur very early.
A second determinant of clinical phenotype is based
on the variable ability of cAMP to induce prolifera-
tion in different cells. Thus, mutational activation of
Go, will be most consequential in those tissues in
which cAMP can stimulate cellular proliferation and/
or hormone secretion. CAMP is not mitogenic in
most cell types, and in some cell types cAMP can
actually inhibit growth. For example, cAMP is not
growth-promoting in fibroblasts, a model system
commonly used to study growth regulation. More-
over, increased cAMP and activation of the PKA sig-
naling cascade in NIH3T3 cells has been shown to
reverse the transformed phenotype induced by acti-
vated p21™ (27, 39). Third, even in cells in which
cAMP is a strong growth stimulator, counter-regula-
tory responses (such as increased cAMP phosphodi-
esterase activity {39, 114, 171]) may occur that can
mitigate or even reverse the activated Go, pheno-
type. Thus, a second genetic “hit” may be required
for the development of autonomous nodules in some
tissues, while in others, persistently elevated levels
of cAMP may be sufficient to alter cellular pheno-
type. In fact, it is unknown whether the autonomous
nodules in MAS patients represent the proliferation
of mosaic rests of cells harboring the gsp mutation
or if they result from the acquisition of additional
gene mutations.

A more severe form of MAS characterized by jaun-
dice, hepatitis, extramedullary hematopoiesis, gas-
trointestinal polyps, thymic hyperplasia, acute pan-
creatitis, neurodevelopmental disorders, and sudden
cardiac death has been described (146). By exten-
sion, this unusually severe syndrome demonstrates
the wide variety of cell types that are dependent on
G.-coupled receptors for normal function and are
positively regulated by cAMP. The percentage of
cells harboring the mutation may be greater than in
the usual form of MAS, accounting for the more
severe phenotype described in this group of patients.
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Albright Hereditary Osteodystrophy,
Pseudohypoparathyroidism, and
Pseudopseundohypoparathyroidism

In 1942, Fuller Albright (5) described a group of
patients with clinical and biochemical features of
hypoparathyroidism (that is, hypocalcemia and hy-
perphosphatemia) who did not show a phosphaturic
response to injected parathyroid extract. He sug-
gested that hypoparathyroidism in these patients
was not caused by a deficiency of parathyroid hor-
mone (PTH) but was due to end organ resistance to
PTH, and termed this condition “pseudo”-hypopara-
thyroidism (PHP). Thus, Albright was the first to
recognize a human disease due to deficient respon-
siveness to a hormone by otherwise normal target
organs. Albright also noted that these patients had
a distinctive constellation of developmental and
skeletal defects, including a round face, short stat-
ure, brachydactyly (shortened metacarpal and meta-
tarsal bones), obesity, heterotopic ossifications, and
mental retardation. Albright later identified other
subjects who had many of these developmental de-
fects but who lacked clinical evidence of hormone
resistance; he termed this disorder “pseudo”- pseu-
dohypoparathyroidism (pseudoPHP) to emphasize
the physical similarities but biochemical differences
between these patients and patients with PHP (7).
This constellation of skeletal and developmental ab-
normalities, with or without hormone resistance, is
now termed Albright hereditary osteodystrophy
(AHO).

Molecular basis of PHP and AHO

The first clues to the molecular basis for hormone
resistance in PHP came from the demonstration by
Chase and Aurbach that the actions of PTH on its
target organs, bone (25) and kidney (24), are medi-
ated by cAMP. PTH infusion in normal subjects leads
to increased urinary excretion of nephrogenous
cAMP (26). By contrast to patients with idiopathic
or postsurgical hypoparathyroidism, patients with
PHP show a markedly blunted urinary cAMP re-
sponse to exogenous PTH, whereas patients with
pseudoPHP show a normal response (26). These ob-
servations have permitted the classification of PHP
into type I and type II: In PHP type I, both the ne-
phrogenous cAMP and phosphaturic response to
PTH is blunted, whereas in PHP type II, a much less
common variant of PTH resistance, there is a normal
nephrogenous cAMP response to PTH infusion but a
diminished phosphaturic response. These responses
suggested that the defect in PHP type I was in the
PTH receptor- adenylyl cyclase system, whereas the
defect in PHP type II was likely to be in a more
distal coriponent of the cAMP signaling pathway.
Subsequent clinical and biochemical studies have
led to a further refinement in the classification of
patients with PHP (Table 3).

Patients with PHP type Ia and their family mem-
bers with pseudoPHP have an approximately 50%
reduction in Go, activity, as determined by func-
tional assays of membranes from a variety of freshly
obtained tissues and cultured cells, including red
bleod cells (94) and cultured fibroblasts (123). In

TABLE 3. Clinical and molecular characteristics of patients with Albright
hereditary osteodystrophy (AHO) and pseudohypoparathyroidism (PHP)*

Molecular . Hormone Response
Defect Inheritance | AHO Resistance to PTH
AHO phenccopy del 2937 Sporadic Yes No Normal
PseudoPHP Various mutations No Normal
PHP Ia in Gag ? imprinting | Yes Multiple Blunted
TcAMP
PHP Ib No mutations in No | PTHonly Blunted
PTH/PTHrP receptor TTRP
PHP 1c 7 adenylyl cyclase Yes Multiple
PHP 11 ? vitamin D status Sporadic No | PTH only B%unted
TRP

Abbreviations: AD = autosomal dominant; PTH = parathyroid hormone; cAMP = cyclic

AMP; PTHrP = PTH-related protein.

* Patients with the AHO phenotype may have identical Gog mutations associated with
(PHP Ia) or without (pseudoPHP) hormone resistance in the same family, but not in the
same generation. Each family has a unique mutation (see Table 4 and Figure 3). Less com-
monly, patients may have isolated resistance to PTH as defined by the absence of urinary
cAMP and phosphaturic (TRP) responses to PTH infusion (PHP Ib and II); these patients
do not have the AHO phenotype and the genetic defects are unknown. Rare patients with
the AHO phenotype and hormone resistance but without a Goyg mutation have been
described (PHP Ic). The molecular cause is unknown. The inheritance patterns are variable.

<>

B3

&

3

&

Py




GENETIC DEFECTS OF G PROTEINS IN MAS AND AHO 179

rmone
ion by
on its
- medi-
s leads
enous
pathic
s with
AP re-
5 with
se ob-
f PHP
he ne-
1se to
h less
ormal
 but a
onses
in the
as the
more
hway.
have
on of

mem-
7 50%
func-
eshly
s red
3). In

&

most cases, these functional deficiencies are corre-
lated with decreased levels of Go, mRNA, as mea-
sured by Northern blot analysis (91), and reduced
Go, protein, as measured by quantitative immu-
noblot analysis (123). However, in some cases levels
of Go, mRNA and Go, protein are normal despite
reduced Go, bioactivity (91). Molecular analysis has
revealed that a unique heterozygous GNASI gene
mutation accounts for Go, deficiency in each kin-
dred studied (Table 4, Figure 3). These various muta-
tions include an initiator codon mutation (122), mis-
sense mutations (110, 165), mutations in sequences
necessary for correct splicing (110), and small dele-
tions (120, 164).

In patients with PHP type Ib hormone resistance
is limited to PTH. Thus, it was hypothesized that
PHP type Ib patients would have genetic defects in
the PTH/PTHrP receptor. However, careful analyses
of the PTH/PTHrP receptor gene (137) and mRNA
(Ding and Levine, unpublished results) from PHP
type Ib patients have failed to identify any mutations
in the coding sequences. More recently, linkage anal-
ysis of a silent polymorpbism in the PTH/PTHrP gene
in several families with PHP type Ib has shown that
the PTH/PTHrP receptor is not linked to inheritance
of PHP type Ib (Ding and Levine, unpublished re-
sults). Although it is generally accepted that the
PTH/PTHrP receptor is the physiologically im-
portant receptor for PTH action, a second gene en-
coding a PTH receptor with different signaling prop-
erties has recently been identified (157).

Inheritance of AHO and hormone resistance

Early clinical studies of AHO demonstrated a fe-
male:male ratio of 2:1 among affected individuals,
which led to the suggestion that AHO is an X-linked
disorder. However, the description of a family in
which male to male transmission occurred (159),
and the subsequent localization of the human
(NAS1 gene to chromosome 20 (95) have led to the
conclusion that AHO is inherited in an autosomal
dominant fashion with sex modification (159) (see
Table 3).

Patients with PHP type Ia and patients with pseu-
doPHP are frequently present in a single family, but
PHP type Ia and psuedoPHP do not occur in the
same generation. This observation has argued
against random, as well as some nonrandom (for
example, metabolic interference [70]), mechanisms
as the basis for the AHO phenotypes. Moreover, in
most families inheritance of Go deficiency from the
father leads to pseudoPHP whereas inheritance from
the mother leads to PHP type la. This pattern of
inheritance has suggested that genomic imprinting
may be involved in determining whether patients
with AHO have hormone resistance (that is, PHP
type Ia) or hormone responsiveness (that is, pseu-
doPHP) (38). However, several lines of evidence
now argue against this theory: 1) in 1 reported family
(140) inheritance of Go, deficiency from either a
father or mother led to hormone resistance (that is,
PHP type Ia) in the affected children; 2) both G,
alleles are expressed in a variety of human fetal tis-

TABLE 4. Mutations of GNASI described in patients with Albright
hereditary osteodystrophy*

Mutation nﬁt‘{olt\ A nggm Biogc?;vity Comments (Reference)
Met!->Val ~100% 1, abnl ~50% (122)
A—G Acceptor splice: intron

3, unpublished
43-bpdeletion ND ND 81% Exon 4 (120)
Leu*—Pro ND ~b{% ND (110)
Arg'®—Cys ~100% ~50% ND (110)
Tyr'*—Asp Unpublished
4-bp deletion ~50% ND ND Exon 7 (164)
4-bp deletion ~100% ~50% ND Exon 8§ (110)
G—C 1 ND ND Donor splice:
intron 10 (165)
1-bp deletion ND ND ND Exon 10 (165),
Ala™-Ser ND nl 33° T 33 Testotoxicosis (67)
dar U o

Alle™ Unpublished
Arg®—His ND ~100% 41% Uncoupled (142)

Abbreviations: abnl = abnormal; ND = not determined; nl = normal.

* A unique GNASI mutation has been identified in each family with members affected
with Albright hereditary osteodystrophy. The relative amounts of Go, gene transcribed
into mRNA and translated into protein as well as the bioactivity of the mutant protein
products are variable. Figure 3 displays the GNASI mutations and the positions of the

mutation in the protein.
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F1G. 3. Mutations in the GNAS! gene. Panel A depicts the human
GGNASI gene, which contains at least 13 exons and 12 introns
and spans over 20-kilobase pairs. Thirteen unigue mutations that
result in loss of Ga, function have been identified in 13 unrelated
Albright hereditary osteodystrophy (AHO) families; missense mu-
tations are denoted by the symbol * Panel B depicts the position
of these mutations above the protein structure. Two polymor-
phisms are denoted by the symbol + in panel A, and the position
of the unchanged amino acid is denoted beneath the predicted
Goi, protein in panel B. The sites of 2 missense mutations that
result in gain of function found in McCune-Albright syndrome
and in some sporadic endocrine tumors are depicted in italics
in panel B. The effects of the mutations in AHO patients are
summarized in Table 4 and in the text.

sues (18), cultured fibroblasts (110), and ovarian tis-
sue (Namnoun and Levine, unpublished); 3) in all
tissues/cells that have been examined, levels of Ga,
protein and activity are similarly reduced in patients
with or without hormone resistance (123).

An AHO-like phenotype has also been described
in several individuals in association with a deletion
in chromosome 2q37.2 (124, 170). These patients
have brachydactyly and short stature but lack evi-
dence of heterotopic ossification. Immunoreactive
Gy is normal and there is no evidence of hormone
resistance (124). This newly described syndrome
may represent a phenocopy of the developmental
defects that occur in patients with AHO due to Go
deficiency. Identification of the gene(s) missing in
these individuals may lend insight into the patho-
physiologic basis for AHO in PHP type Ia.

Clinical variability of AHO

Subjects with Go, deficiency manifest consider-
able variability in the clinical presentation of AHO,
even in affected members of the same family.
Whereas patients with pseudoPHP typically have
normal intelligence, patients with PHP type Ia show
a spectrum of cognitive function ranging from nor-
mal to profoundly impaired. Obesity and skeletal

dysplasias such as round facies, short stature, and
brachydactyly may be obvious in some subjects and
subtle (or even absent) in others. Subcutaneous os-
sifications are present in approximately one-half of
patients with Go, deficiency, and are unrelated to
hypocalcemia or hyperphosphatemia.

There does not appear to be a correlation between
the expression of AHO and the extent of hormone
resistance, suggesting a direct effect of Ga, defi-
ciency on skeletal development. Recent studies of
the receptor for PTH provide some insights into the
nature of this effect. There is a single receptor for
both PTH and PTH-related protein (2). Transgenic
mice in which both alleles of the gene encoding
PTHrP are disrupted develop severe skeletal dyspla-
sias that are fatal in the neonatal period (74). Thus
the role of Go, in development of AHO may be more
related to skeletal resistance to PTHrP than to PTH.

Patients with PHP type Ia manifest target organ
resistance not only to PTH but also to additional
hormones that activate adenylyl cyclase. Most pa-
tients have subclinical hypothyroidism with a low
or low normal serum concentrations of thyroxine.
Basal levels of serum TSH are generally elevated and
show an exaggerated response to TRH. The thyroid
gland is not enlarged despite elevated serum concen-
trations of TSH. Clinically significant hypothyroid-
ism occurs in some patients, and may provide the
initial clue to a diagnosis of PHP type Ia (93). Women
with PHP type Ia frequently have abnormal ovarian
function and in some cases have elevated serum lev-
els of gonadotropins and show exaggerated LH and
FSH responses to administered GnRH. Remarkably,
patients with PHP type Ia do not show abnormal
responses to all hormones that stimulate adenylyl
cyclase. For exaraple, PHP type Ia patients have nor-
mal physiologic responses to ACTH, vasopressin,
and glucagon, suggesting (at least in the case of the
hepatic response to glucagon) that in some tissues
submaximal increases in intracellular cAMP are ade-
quate to generate a physiologic hormone response
(112).

Several features of the variability in hormone re-
sistance in different target tissues remain to be ex-
plained: 1) hormone resistance does not occur in all
tissues in which receptor activation leads to stimula-
tion of adenylyl cyclase; 2) hormone resistance does
not occur in the same target tissues in all patients;
and 3) not all patients with AHO and deficiency of
Ga, have hormone resistance (pseudoPHP).

Summary

Inactivating and activating mutations in the gene
encoding Go, (GNAS1) are known to be the basis
for 2 well-described contrasting clinical disorders,
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Albright hereditary osteodystrophy (AHO) and
McCune-Albright syndrome (MAS). AHO is an au-
tosomal dominant disorder due to germline muta-
tions in GNASI that decrease expression or function
of Go, protein. Loss of Ga, function leads to tissue
resistance to multiple hormones whose receptors
couple to Go,. By contrast, MAS results from postzy-
gotic somatic mutations in GNASI that lead to en-
nhanced function of Go, protein. Acquisition of the
activating mutation early in life leads to a more gen-
eralized distribution of the mosaicism and is associ-
ated with the classic clinical triad of polyostotic
fibrous dysplasia, endocrine hyperfunction, and café
au lait skin lesions described in MAS. Acquisition of
a similar activating mutation in GNASI later in life
presumably accounts for the restricted distribution
of the gsp oncogene, and is associated with the de-
velopment of isolated lesions (for example, fibrous
dysplasia, pituitary or thyroid tumors) without other
manifestations of MAS. Tissues that are affected by
loss of Go, function in AHO are also affected by
gain of Go, function in MAS, thus identifying specific
tissues in which the second messenger cAMP plays
a dominant role in cell growth, proliferation, or func-
tion. Further investigations of the functions of Goi
and other members of the GTPase binding protein
family will provide more insight into the pathogene-
sis and clinical manifestations of human disease.
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